Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In-sensor processing of dynamic and static information of visual objects avoids exchanging redundant data between physically separated sensing and computing units, holding promise for computer vision hardware. To this end, gate-tunable photodetectors, if built in a highly scalable array form, would lend themselves to large-scale in-sensor visual processing because of their potential in volume production and hence, parallel operation. Here we present two scalable in-sensor visual processing arrays based on dual-gate silicon photodiodes, enabling parallelized event sensing and edge detection, respectively. Both arrays are built in CMOS compatible processes and operated with zero static power. Furthermore, their bipolar analog output captures the amplitude of event-driven light changes and the spatial convolution of optical power densities at the device level, a feature that helps boost their performance in classifying dynamic motions and static images. Capable of processing both temporal and spatial visual information, these retinomorphic arrays suggest a path towards large-scale in-sensor visual processing systems for high-throughput computer vision.more » « less
-
A multiscale numerical framework has been developed to investigate the dispersion of deep-sea hydrothermal plumes that originate from the Endeavour Segment of the Juan de Fuca Ridge located in the Northeast Pacific. The analysis of simulation outputs presented in this study provides insights into the influences of tidal forcing and the buoyancy flux associated with hydrothermal venting on ocean circulation and plume dispersion in the presence of pronounced seafloor topography. The results indicate that tidal forcing drives anti-cyclonic circulation near the ridge-axis, while hydrothermal venting induces cyclonic circulation around vent fields within the axial rift valley. Tidal forcing has a notable impact on plume dispersion, particularly near the large topographic features to the north of the Endeavour Segment. Furthermore, plume dispersion exhibits notable inter-annual variability, with a northbound trajectory in 2016 and a southbound trajectory in 2021. The study also reveals that both buoyancy fluxes and tidal forcing enhance the mixing of hydrothermal plumes with ambient seawater.more » « less
An official website of the United States government
